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We present an isovector Lagrangian, which admits stable, nonsingular soliton 
solutions in three space dimensions. The spherical solution and its total energy 
are obtained via a variational procedure. An antisymmetric, second-rank tensor 
is defined in terms of the isovector field and its derivatives. This tensor satisfies 
Maxwell's equations. The corresponding current is identically conserved and the 
total charge is topologically quantized. 

1. I N T R O D U C T I O N  

Interest in nonlinear field theories possessing soliton solutions is grow- 
ing. One of the most successful nonlinear relativistic field theories which 
has proved its physical significance is the model due to Skyrme (1961). In 
this model, baryons are solitons, having finite radii and self-energies. Exten- 
sive work has been done on the phenomenological as well as theoretical 
aspects of the Skyrme model (see, e.g., Holzwarth and Schwesinger, 1986). 
Although the predictions of  this model are accurate only within --20%, it is 
still regarded as a remarkable achievement. Another example of  soliton solu- 
tions of  nonlinear field theories is the magnetic monopole of  t 'Hoof t  (1974) 
and Polyakov (1974). In this case, magnetic monopoles are solitons of a non- 
Abelian gauge field theory. 

In the present paper, we build a La~angian  density in terms of a three- 
component scalar field, which undergoes spontaneous symmetry breaking. 
The corresponding dynamical equations possess stable soliton solutions. 
Topology of the fields is then used to construct a conserved current which 
yields quantized charges. The "rr2 homotopy group is used for this purpose. 
Finally, an antisymmetric, second-rank tensor is defined in such a way that 
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it satisfies Maxwell 's homogeneous and inhomogeneous equations. Despite 
the apparent similarity with the conventional Maxwell equations, the resulting 
electrodynamics is highly nonlinear, which is a sort of hidden nonlinearity, 
as pointed out by Ranada (1990). 

2. C H O I C E  OF T H E  L A G R A N G I A N  DENSITY 

The elementary field upon which the present work is based is an isovector 
field 6 = (61, 62, 63). Each 6 ,  (a = 1, 2, 3) is a pseudoscalar under Lorentz 
transformations. The Lagrangian density is required to satisfy the following 
conditions: (1) relativistic covariance, (2) spontaneous breaking of the internal 
symmetry, (3) stability of the soliton solutions, and (4) finiteness of the 
energy density. 

It can be shown that the simplest choice 

1 
Y = ~ a~r162  - v ( r 1 6 2  a = 1 , 2 , 3  (1) 

does not satisfy these conditions. The next simplest choice is 

= - x ( o ~ r 1 6 2  2 - v ( r 1 6 2  x > 0 (2) 

where 

2 

V(~,,6, ,)  = bo 1 - ; bo > O, 6 = (6.6u) '/z (3) 

The reason for the negative sign of  the kinetic term will become clear shortly 
[throughout this paper, we use the convention ~%~= diag(l,  - 1 ,  - 1 ,  - 1 )  
for the metric tensor]. 

The equation of  motion derived from (2) reads 

o~o.r162162162 + a~.r162 + a.r162162 - 
I 3 V  

X ar 
(4) 

The corresponding energy-momentum tensor is 

T ~  = - - 4 k (  O ~ l , O ~ 6 b ) O ~ . O ~ 6 .  -- .q~ffs (5) 

In the following sections, we will discuss the soliton solutions of (4) and 
some of their properties. 
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3. S P H E R I C A L  SOLITONS 

We show the existence of spherical solitons, by substituting the ansatz 

~b. = ~b(r) ~-- (6) 
t"  

into (4) and (5). After straightforward calculation, we obtain 

3 
dr ----T \ d r }  ~ \ dr J + r \ dr J + r ~ dr 2 r 4 4h 0~b (7) 

and 

= To o = h [ (d~b?  + 4  + 4  + V(~b) 
[ \ d r J  -~ -~ \ d r J  J 

(8) 

The positiveness of all terms in ~ is the reason for the negative sign of the 
kinetic term in (2). The total energy is obviously 

L o H = ~.47rr 4 dr (9) 

Equation (7) is also obtainable via minimizing the energy functional (9). The 
spherical soliton is the solution to (9) subject to the boundary conditions 

qb(r) = 0 at r =  0; ~b(r) = qb0 as r---~oc 

The condition ~b(0) = 0 is required to ensure the single-valuedness of qb~ at 
r = 0. ~b(r) is expected to become qb 0 at infinity, because this value corresponds 
to the minimum (vacuum) of the potential (3). 

The solution to (7) with boundary conditions (10) is obtained through 
a numerical procedure (variational technique). The following change of vari- 
ables is very convenient: 

d~ . 1 [ 4 h \ TM 

= qb O '  z -  1 + r/r0' r~ ~ 0 )  qb~ (10) 

r0 is a constant o f  dimension length, and determines the scale radius of the 
soliton. Obviously, z E [0, 1]. This interval is divided into N segments, and 
a trial function ~(z) is inserted into the energy integral (11). This trial function 
could be as simple as the straight line ~(z) = 1 - z. Then I~J i = I~J(Zi) is 
varied step by step, derivatives are computed according to the conventional 
finite-difference expressions, and H is evaluated at each step. The procedure 
is iterated by a computer program until H is minimized. Convergence is seen to 
be quite rapid, and the numerical solution is obtained to the desired accuracy. 
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The asymptotic behavior of the solution to (7) can be obtained by 
substituting a series ansatz for t~(z) or +(r). The result is 

~ ( Z )  : 1 - -  2 Z  4 - -  8 Z  5 q- " ' "  for z --+ 0 (11) 

( 8d)_____~ ) for r--+ oo (12) d~(r) ~- d~o 1 - bor4 " '"  

r0 10k~ + " "  (13) 

in which k is a constant fixed by the consistency of the asymptotic solutions. 
The corresponding total energy is 

E = 4.05 -3/4 -1/4..k3 (14) �9 ~" 2TOO W0 

4. TENSOR FORMULATION 

Consider the following antisymmetric tensor built from ~b~ and its 
derivatives: 

F " ~  = 47r e ~ ( % o c d p . O ~ q b b O ~ +  C + O~A~) (15) 
c 

in which A~ is a four-vector defined via the wave equation 

[ ~ a  ~ - O~( o ~ a  ~) = 2e.b,.O~( d~O~+bO~), . )  (16) 

It can be easily shown that F "v satisfies Maxwell 's equations 

where P~'~ is the dual tensor 

1 82T 
- - - 

c 

and JV is the current 4-vector 

O ~ F r  ~ = 42T j~, (17) 
c 

O~P ~ = 0 (18) 

_ _ _  eabcdp.O~d?bOvd& + 4~r ( O . A  v _ OVA~ ) (19) 
c 

This current is conserved, 

O~J" = 0 (21) 

and the corresponding charge is topologically quantized (Arafune e t  al . ,  1973) 
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f 
Q = I j o  d3x = ne (22) 

where e = 8"rr+~ is the fundamental charge. Topological quantization is 
fulfilled via the second homotopy group 'rrz(S z) = Z. 

It can be easily shown that n = 1 for the spherical soliton of  Section 3. 
If  the components of  FCV are identified with the electric and magnetic 

field components in the usual manner, and j r  is recognized as the electromag- 
netic 4-current, we immediately obtain the following results for the spheri- 
cal soliton: 

B = 0  

e ^ 
E = ~ r  as r ---~ oo 

E 2 
= - -  a s  r - - - ~ o o  

8~r 

(23) 

(24) 

(25) 

E ---~ 0 as r ---~ 0 (26) 

The isovector soliton thus resembles a charged particle of  finite self-energy 
and nonsingular electric field. 

As the electromagnetic energy density varies as - - l / r  4 at large radial 
distances from the charged soliton, we expect inverse-square, Coulombic 
interaction between two charged solitons at large distances. 
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